
An effective query pruning technique for multiple regular
path expressions

Chang-Won Park, Chin-Wan Chung *

Division of Computer Science, Department of Electrical Engineering and Computer Science, Korea Advanced Institute of Science and Technology,

373-1 Kusung-dong, Yusung-gu, Daejeon 305-701, South Korea

Received 22 May 2001; received in revised form 14 September 2001; accepted 3 October 2001

Abstract

Regular path expressions are essential for formulating queries over the semistructured data without specifying the exact struc-

ture. The query pruning is an important optimization technique to avoid useless traversals in evaluating regular path expressions.

While the previous query pruning optimizes a single regular path expression well, it often fails to fully optimize multiple regular path

expressions. Nevertheless, multiple regular path expressions are very frequently used in nontrivial queries, and so an effective op-

timization technique for them is required. In this paper, we present a new technique called the two-phase query pruning that consists

of the preprocessing phase and the pruning phase. Our two-phase query pruning is effective in optimizing multiple regular path

expressions, and is more scalable and efficient than the combination of the previous query pruning and post-processing in that it

never deals with exponentially many combinations of sub-results produced from all the regular path expressions.

� 2002 Elsevier Science Inc. All rights reserved.

1. Introduction

The semistructured data (Abiteboul, 1997; Abiteboul

et al., 2000; Buneman, 1997) has gained a lot of popu-
larity recently in the light of its diverse applications such

as managing many new forms of data including XML

data, integrating heterogeneous data sources, and

managing Web sites. The structure of the semistructured

data is irregular, partially known, or subject to frequent

changes. Because of such structural properties, regular

path expressions are essential for formulating queries

without specifying the exact structure. However, the
evaluation of regular path expressions traverses many

more edges than needed, and hence avoiding the useless

traversals is an important optimization. In this re-

spect, the query pruning (Fernandez and Suciu, 1998;

McHugh and Widom, 1999a) has been developed to

optimize a query with regular path expressions by re-

writing the query into another optimized one with more

exact regular path expressions using some semistruc-
tured graph schema (Abiteboul et al., 2000; Buneman

et al., 1997; Goldman and Widom, 1997; Nestorov et al.,

1997).

1.1. Related work

Kifer et al. (1992) have introduced the extended path

expressions to retrieve information captured by the

schemas of object-oriented databases. The extended

path expressions support not only retrieving schemas

but also retrieving data through arbitrary paths by

means of new kinds of variables such as attribute vari-

ables and path variables. In addition, the generalized
path expressions (Christophides et al., 1994) have been

introduced to support retrieving data at various granu-

larity levels from structured documents (e.g., SGML)

stored in object-oriented databases by using attribute

variables and path variables. Although the two path

expressions are similar to the regular path expressions

for the semistructured data, they are supplementary el-

ements, and assume conventional rigid schemas defined
a priori. In contrast, the regular path expressions are the

primary elements of semistructured queries, and do not

assume conventional rigid schemas (Abiteboul, 1997;

Abiteboul et al., 2000; Abiteboul et al., 1997; Buneman,

1997; Quass et al., 1995).

*Corresponding author.

E-mail addresses: cwpark@islab.kaist.ac.kr (C.-W. Park),

chungcw@islab.kaist.ac.kr (C.-W. Chung).

0164-1212/02/$ - see front matter � 2002 Elsevier Science Inc. All rights reserved.

PII: S0164-1212 (02)00046-8

The Journal of Systems and Software 64 (2002) 219–233

www.elsevier.com/locate/jss

mail to: cwpark@islab.kaist.ac.kr

The query pruning is a representative technique for

optimizing regular path expressions in the context of the

semistructured data. Other optimization techniques

based on rewriting regular path expressions using views

(Calvanese et al., 1999; Fernandez and Suciu, 1998)

have been developed, which are special cases of general
query rewriting techniques (Halevy, 2000) for the

semistructured data. However, those techniques are

applicable only to a single regular path expression

(Calvanese et al., 1999; Fernandez and Suciu, 1998), and

hence the query pruning is the unique technique for

multiple regular path expressions. As another possible

approach, we may think of adapting the technique for

generalized path expressions (Christophides et al., 1996)
to the cost-based optimization technique developed for

the semistructured data (McHugh and Widom, 1999b;

McHugh and Widom, 1999c). However, the technique

assumes conventional rigid schemas, and integrates the

schema lookup and the data lookup to apply cost-based

optimization techniques to both lookups in a homoge-

neous fashion. Therefore, it is inadequate for the semi-

structured data.

1.2. Motivation and our approach

While the previous query pruning optimizes a single

regular path expression well, it often fails to fully opti-

mize multiple regular path expressions. This ineffec-

tiveness of the previous query pruning is caused by

ignoring correlations among multiple regular path ex-
pressions in a query, resulting in schema-level excessive

paths which do not contribute to the answer of the

query. Worse still, even a single schema-level excessive

path may cause far more such paths to be traversed

during the evaluation at the data instance level. The

previous approach (Fernandez and Suciu, 1998), which

augments the query pruning with post-processing, must

check an exponential number of combinations of sub-
results for all regular path expressions through the post-

processing in order to eliminate schema-level excessive

paths. Thus, the previous approach runs in exponential

time with respect to the number of regular path ex-

pressions, and therefore the post-processing has not

been adopted (Fernandez and Suciu, 1998).

Nevertheless, multiple regular path expressions are

very frequently used in nontrivial queries such as
branching path expressions (McHugh and Widom,

1999b). So an effective optimization technique for such

nontrivial queries is very important because of their high

evaluation cost. In this regard, the primary concern of

this paper is to improve the query pruning without

compromising the time complexity.

In this paper, we present a new technique called the

two-phase query pruning that consists of the prepro-
cessing phase and the pruning phase. The preprocessing

phase concatenates correlated regular path expressions

to preserve their correlation. A new concept called the

least maximized condition set guides the preprocessing.

After that, the pruning phase optimizes the preprocessed

regular path expressions. Our two-phase query pruning

is effective in optimizing multiple regular path expres-

sions, and is more scalable and efficient than the
combination of the previous query pruning and the

post-processing in that it never deals with exponentially

many combinations of sub-results produced from all the

regular path expressions. In order to validate our claim,

we have implemented a prototype system, and con-

ducted several experiments. The experimental results

show that the two-phase query pruning is both effective

and scalable unlike the previous approach. Therefore,
our contributions are as follows:

• An effective and scalable two-phase query pruning

technique for multiple regular path expressions:

– we propose a new approach to eliminate schema-

level excessive paths without the post-processing;

– we define a new concept of the least maximized

condition set for concatenating correlated regular
path expressions during the preprocessing;

– we present a sound and complete preprocessing

algorithm, which produces the least maximized

condition set;

– we present a correct and effective pruning algo-

rithm, which properly optimizes the least maxi-

mized conditions;

• A set of meaningful experiments using a fully imple-
mented prototype system.

1.3. The organization of the paper

The remainder of this paper is organized as follows.

We present preliminaries and a running example to be
used throughout the paper in Section 2. Section 3 de-

scribes the previous query pruning. In Section 4, we

discuss the ineffectiveness of the previous query pruning

in some detail, and define two new concepts to cope with

the ineffectiveness. On the basis of the concepts, in

Section 5, we present the two-phase query pruning.

Section 6 describes experiments, and shows experimen-

tal results. Finally, we conclude the paper by briefly
summarizing main results of the paper in Section 7.

2. Preliminaries and running example

Data. Fig. 1(a) shows a sample data. We can think of

labels, depicted as strings without quotation marks, as

structural components. Atomic values are only at leaves,
and depicted as quoted strings. We omit most of data

that are irrelevant to our further discussion. The top-

220 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

most edge Research_organizations is not an or-

dinary edge but a globally named variable leading to the

root of the data.
Schema. A schema, to which the data conforms, ac-

companies the data in Fig. 1(b). The schema is similar to

the data except that each edge can be labeled with a set

of all possible labels delimited by ‘‘j,’’ and that no values

are permitted even at leaves. We combine some portions

of the original schema for brevity: As an instance, Ac-

ademic_research_areas edge depicted as a dotted

line stands for a set of edges each of which denotes a
specific research area for each academic research orga-

nization. We define the extent for every schema node s,

extðsÞ, to be the set of all data nodes that are classified as

s. For example, extðs4Þ is {‘‘KAIST’’, ‘‘UPENN’’}.

Query. To formulate an example query, we have

adopted the query language introduced by Fernandez

and Suciu (1998) except using ‘‘_’’ and ‘‘�’’ to express

any single edge and any sequence of edges, respectively.
Consider the query below:

select C

where �:Professor:Project:A in

Research organizations; ð1Þ
:B in Research organizations; ð2Þ
Name:C in B; ð3Þ
Research: :Project:A in B; ð4Þ
Supported by:B in A ð5Þ

The condition, 1 R.var1 in var2, means a boolean value

that is true if there exists a path matched with the path

expression R from a data node bound to var2 to a data

node bound to var1. The order of the conditions in the

query is not significant. Let h be a substitution of vari-

ables with data nodes satisfying all conditions in where
clause. Then the meaning of the query is retrieving all

data nodes bound to the variable C by finding every h.
Thus the query retrieves names of the research organi-

zations that appear to support their own project in

which some professor participates. The answer is ‘‘UP-

ENN’’.

The roles of the variables. We introduce the roles us-

ing examples. In Condition (5), A and B are the source
variable and the destination variable of (5), respectively.

In Condition (1) and Condition (5), A is an intermediate

variable, for which A is the destination variable of (1)

and the source variable of (5). This interaction from (1)–

(5) via A is the input/output interaction. In addition,

some conditions that can be ordered, for example from

(1)–(5), by any sequence of the input/output interactions

are ordinal conditions. In Condition (3) and Condition
(4), B is a branch variable, for which B is the source

variable of (3) and (4). In Condition (1) and Condition

(4), A is a join variable, for which A is the destination

variable of (1) and (4). Intermediate variables, branch

variables, and join variables are to bind a unique data

node to each occurrence of the variables in every sub-

stitution h. Finally, the variable C to be retrieved by the

query is the result variable.

3. Query pruning

With multiple conditions given, the query pruning

proceeds with the following steps.

Constructing product automata. We consider con-

structing the product automata (Fernandez and Suciu,
1998) using, for example, ‘‘_’’ in Condition (2) as fol-

lows: (1) Construct a nondeterministic automaton A2

corresponding to ‘‘_’’ as depicted in Fig. 2(a); (2) For the

schema S in Fig. 1(b) and A2, construct the prod-

uct automaton S�A2 with 14� 2 states, ðs1; a1Þ,
ðs1; a2Þ; . . . ; ðs14; a2Þ. Transitions are ðs; aÞ!l ðs0; a0Þ for

any edge s!l s0 in S and any transition a!l
0
a0 in A2 if l0 is

either l or the wildcard. The initial states are states ðs; aÞ
such that s is a starting point of matching in S and a is

the initial state of A2: i.e. ðs1; a1Þ in this case, since the

starting point of matching is always the root s1 of S. In

general, starting points of matching are not fixed, nor

are initial states. The terminal states are states ðs; aÞ such
that a is a terminal state in A2. The other product

Fig. 1. A sample semistructured data and its schema about research

organizations: (a) data graph, (b) schema graph.

1 In the rest of this paper, we use condition or path expression in

place of regular path expression, if there is no confusion.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 221

automata for S and the other conditions are constructed

identically.

The following step constructs the AND/OR graph

(Fernandez and Suciu, 1998), and produces pruned

product automata S uA2 in Fig. 2b, which consists of

states and transitions in S�A2 that are on every valid
path from an initial state to an terminal state.

Constructing the AND/OR graph. In the AND/OR

graph, an OR node is a node that is accessible if some of

its predecessors is accessible, while an AND node is a

node that is accessible if all its predecessors are acces-

sible. First, we take the disjoint union of the product

automata S�Al, where all states of them are OR nodes.

Second, implicit interactions among the conditions are
expressed as follows: (1) Considering some condition

R:z in x in isolation, z may be bound to some node in

extðsÞ iff ðs; aÞ is in the pruned product automaton S uA

of the condition for at least some terminal state a in A.

This is an OR condition, and described by an OR node

ðs; z;AÞ created for every schema node s in S and the

product automaton S�A of the condition R:z in x. In
addition, add edges ðs; aÞ ! ðs; z;AÞ for every terminal
state ðs; aÞ in S�A. (2) Considering all conditions

R1:z in x1; . . . ;Rn:z in xn on a variable z, z may be bound

to some node in extðsÞ iff it can be bound in each of these

conditions. This is an AND condition, and described by

an AND node ðs; zÞ created for every variable z and

every schema node s in S. Add edges ðs; z;AiÞ ! ðs; zÞ
for every S�Ai of the condition Ri:z in xi. (3) Input/

output interactions of each pair of R1:z in x and

R2:y in z via the intermediate variable z are described by
adding edges ðs; zÞ ! ðs; aÞ for the product automaton

S�A0 of R2:y in z, where a is the initial state of A0.
Finally, the query pruning computes the maximal ac-

cessibility property (Fernandez and Suciu, 1998), which

is the maximal set of accessible nodes, of the AND/OR

graph. The AND node ðs; vÞ, for which s is the root node

of S and v is a globally named variable, is regarded as

always accessible. We define the pruned product auto-
mata S uAl to consist of accessible OR nodes and

transitions that are on every path from an accessible

initial OR node to an accessible terminal OR node. All

the other nodes in S�Al are regarded as inaccessible.

Fig. 2(c) shows a simplified version of the resulting

AND/OR graph that contains only accessible nodes.

Composing the resulting optimized query. Every ac-
cessible AND node ðs; zÞ means that the variable z can

be bound to data nodes in extðsÞ. The query pruning

composes the resulting optimized query using all paths

from accessible initial OR nodes to accessible terminal

OR nodes for each pruned product automaton. For

example, since the AND node (s1, Research_organiza-

tions) is accessible in Fig. 2(c), we have ‘‘(Aca-

demic_institute | University | Institute |

Laboratory)’’ instead of ‘‘_’’ using all paths from the

accessible initial OR node ðs1; a1Þ to the accessible ter-

minal OR nodes ðs2; a2Þ and ðs3; a2Þ in S uA2 of Fig.

2(b). We can verify the resulting expression by observing

all paths matched with ‘‘_’’ from s1 to s2 and s3 in S of

Fig. 1(b).

The query pruning runs in polynomial time (Fer-

nandez and Suciu, 1998) with respect to the number of
states in the regular path expressions and the number of

schema nodes in the schema, and the resulting optimized

query of the example query is as follows:

Note that the resulting query is not fully optimized. For

instance, sub-graphs of Institute and Laboratory

need to be traversed excessively according to Condition

(2). However, we should avoid traversing the sub-graphs

because there exist no Supported_by edges. In addi-

tion, Industrial_research_areas edge only for
Institute and Laboratory appears in Condition

(4). Such conditions that are not fully optimized cause

schema-level excessive paths.

4. Least maximized condition set

We have observed an important ineffectiveness of the
query pruning in the previous section. Consider the

select C

where ðAcademic institutejUniversityÞ:Department:Faculty:Professor:Project:A
in Research organizations; ð1Þ

ðAcademic institutejUniversityjInstitutejLaboratoryÞ:B
in Research organizations; ð2Þ

Name:C in B; ð3Þ
Research:ðAcademic research areasjIndustrial research areasÞ:Project:A in B; ð4Þ
Supported by :B in A ð5Þ

222 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

pruned product automaton of a certain condition

R:y in z in an AND/OR graph. Although multiple AND

nodes ðsj; yÞ can be accessible from the multiple AND

nodes ðsi; zÞ via the pruned product automaton, not all

combinations of them are valid. For instance, the AND/

OR graph of Fig. 2(c) indicates that ðs13;AÞ and ðs14;AÞ
are accessible via S uA4 of Condition (4), i.e., Re-

search._.Project.A in B, from ðs2;BÞ and ðs3;BÞ.
However, in fact, if the traversal starts from s2, then
ends at s13 but not at s14 according to Condition (4) and

the schema of Fig. 1(b). The ineffectiveness is caused by

ignoring such correlations for each condition in some

ordinal conditions, resulting in schema-level excessive

paths.

The previous approach, which augments the query

pruning with the post-processing, must check every
combination of respective sub-results for ordinal con-

ditions by means of their product automata in order to

eliminate schema-level excessive paths (Fernandez and

Suciu, 1998). For example, S uA2 and S uA4 are

product automata for two ordinal conditions (2) and (4).

The post-processing must consider 22 combinations of

sub-results for them. Let us denote a combination as a

triple ½si; sj; sk
. The triple corresponds to a possible

binding for variables Research_organizations, B,

and A. From Fig. 2(c), all possible bindings are

½s1; s2; s13
, ½s1; s2; s14
, ½s1; s3; s13
, and ½s1; s3; s14
. For

each possible binding triple, the post-processing checks

whether the binding is valid or not by means of the two
product automata S uA2 and S uA4. Thus, the previ-

ous approach runs in exponential time with respect to

the number of regular path expressions. For this reason,

the post-processing has not been adopted (Fernandez

and Suciu, 1998).

In this section, we define a new concept called the

least maximized condition set for an alternative ap-

proach based on preprocessing. The objective of defin-
ing the least maximized condition set is to preserve the

correlations by building a single product automaton for

each group of ordinal conditions instead of using indi-

vidual product automata. In this respect, we present

two rules to concatenate conditions in a group of or-

dinal conditions into a longer one. In the rules, Ri and

vi are an arbitrary path expression and a variable,

respectively.

Rule 1 R1:v0 in v1, R2:v2 in v0 � R1:R2:v2 in v1
Rule 2 R1:v0 in v1, R2:v2 in v0 � R1 :v0R2:v2 in v1

Let D be a set of all sub-sets of data nodes in a given

data, and P be a set of all path expressions in a given

query. Suppose we have a function t : D� P 7!D such

that t determines which unique set Dd 2 D is to be
produced by evaluating a path expression p 2 P from a

set Ds 2 D. The rules are correct because tðtðDs;R1Þ;
R2Þ � tðDs;R1:R2Þ. However, we must take care in re-

moving an intermediate variable after concatenating a

pair of path expressions as in Rule 1, because the in-

termediate variable may have other roles as a branch

variable, a join variable, and a result variable. In such

cases, we preserve that kind of variable bindings using a
new internal construct ‘‘variable annotation’’ denoted

by ‘‘ :v0’’ in Rule 2.

We can apply the rules to arbitrary overlapping

groups of ordinal conditions in a condition set. The

resulting condition set is equivalent to the original

condition set if the overlapping groups cover all condi-

tions in the original set, since every substitution h sat-

isfying the overlapping groups also satisfy the original
condition set, and vice versa. In addition, ordinal con-

ditions in each of the overlapping groups can be con-

catenated in an arbitrary repeating order if they form a

cycle by some sequence of input/output interactions.

Thus, we have infinitely many equivalent condition sets

from such cyclic conditions.

For example, consider a set of cyclic conditions

fR1:x in DB;R2:y in x;R3:x in y;R4:z in yg. Four ex-
amples among infinitely many equivalent condition sets

are:

Fig. 2. The automaton A2 (a) and the pruned product automaton

S uA2 for ‘‘_’’ (b), and the resulting AND/OR graph for the query (c).

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 223

(1) fR1 :xR2 :
yR3:x in DB;R1 :xR2 :

yR4:z in DBg
(2) fR1 :xR2 :

yR3 :xR2 :
yR3:x in DB;R1 :xR2 :

yR4:z in DBg
(3) fR1 :xR2 :

yR3 :xR2 :
yR4:z in DBg

(4) fR1 :xR2 :
yR3 :xR2 :

yR3 :xR2 :
yR4:z in DBg

Among all possible condition sets, we need to deter-
mine which is the most desirable one. In the case of (2)

and (4), regarding ‘‘:x’’ as either ‘‘x.’’ or ‘‘.x’’, each of

them has a redundant sub-expression ðx:R2 :
yR3:xÞ. We

should avoid such redundancy, in general, because the

longer a path expression is in length, the costlier the

path expression is in optimizing. Between (1) and (3), we

prefer (1) because (3) also has a redundant sub-expres-

sion ðx:R2:yÞ. The condition set like (1) is called the least
maximized condition set, and defined below. Given a

query, let a starting variable be a variable used only as

source variables in the conditions of the query. Con-

versely, let a terminating variable be a variable used only

as destination variables in the conditions of the query.

Definition 1 (Least maximized condition). A least maxi-

mized condition is a condition produced by concate-
nating ordinal conditions in a query using Rule 1 and

Rule 2 such that

• the source variable of the condition is a starting vari-

able;

• all variables except the destination variable of the

condition are distinct;

• the destination variable of the condition is either a
terminating variable if all variables in the condition

are distinct, or the second occurrence of a variable

otherwise.

Definition 2 (Least maximized condition set). The least

maximized condition set for a query is the set contains

every least maximized condition in the query.

The concept of the individual branch defined by

McHugh and Widom (1999b) is similar to the concept of

the least maximized condition, but their concept differs

from ours in the following aspects: (1) The individual

branch considers strictly tree-shaped path expressions

only, and (2) each individual branch does not overlap

with any other individual branches.

5. Two-phase query pruning

The two-phase query pruning consists of the pre-

processing phase and the pruning phase. When a query

is provided, the preprocessing phase produces the least

maximized condition set for the query, and then the

pruning phase optimizes the least maximized condition

set.

5.1. preprocessing phase

The preprocessing phase converts a condition set into

a graph structure, called the interaction graph. Then, it

seeks every least maximized condition by performing the

depth first search (DFS) over the graph.

5.1.1. Constructing the interaction graph

(1) Let the source variable s and the destination

variable d of each condition be two nodes, and create a

directed edge from s to d; (2) let the path expression p of

the condition be the label of the directed edge; (3) let

every occurrence of the same variable be a unique node.

During this construction, we collect additional infor-
mation about each variable to facilitate determining the

roles of each variable. In the case of the result variable,

we store the fact at the corresponding node. In addition,

we also store the in-degree and the out-degree of each

variable at the corresponding node. The in-degree of a

variable is the number of conditions that use the vari-

able as a destination variable. Similarly, the out-degree

of a variable is the number of conditions that use the
variable as a source variable. Using such information,

we can determine the roles of a variable as in Table 1. It

takes constant time.

5.1.2. The DFS-based preprocessing algorithm

The algorithm finds every simple path from each

starting variable in an interaction graph by performing

DFS. Here, a simple path is a path in which (1) the last
variable is a terminating variable, and all variables are

distinct, if there is no cycle; and (2) if there is a cycle, the

second occurrence of a variable terminates the simple

path. In case (2), the other variables are distinct. The

following lemma states that a simple path from a

starting variable corresponds to a least maximized

condition.

Let c1; c2; . . . ; cn be an ordered sequence of ordinal
conditions in a query Q. They form a concatenated

condition c1n by concatenating them according to Rule 1

and Rule 2. We define a variable path v1s; v1d; v2d; . . . ; vnd
to denote a sequence of variables appearing in the or-

dinal conditions according to the sequence of condi-

tions. Here, vis and vid are the source and the destination

variable of the ith condition, respectively. We omit every

source variable except the first one since every vid equals

Table 1

Determining the roles of a variable

In-degree Out-degree Role

¼0 P 1 Starting variable

P 1 P 1 Intermediate variable

P 0 P 2 Branch variable

P 2 P 0 Join variable

P 1 ¼0 Terminating variable

224 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

to vðiþ1Þs. A path in the interaction graph of Q is also

called as a variable path, because each variable is a

unique node in the interaction graph.

Lemma 1. The concatenated condition c1n is a least
maximized condition iff the variable path in c1; c2; . . . ; cn
is a simple path from a starting variable in the interaction
graph of Q.

Proof. Suppose c1n is a least maximized condition, but

the variable path v1s; v1d; . . . ; vnd is not a simple path

from a starting variable. This means one of the follow-

ing cases:

Case 1. The variable path contains either three or
more identical variables or two or more pairs of iden-

tical variables;

Case 2. We can add adjacent nodes to the variable

path without violating the definition of a simple path.

Case 1 contradicts that c1n is a least maximized con-

dition. Our process to produce a least maximized con-

dition concatenates no more conditions if it sees the

second occurrence of a variable. The second occurrence
indicates a cycle. Hence c1n never contains three or more

occurrences of the same variable and two or more cycles.

However, Case 1 means that c1n does.

Case 2 also contradicts that c1n is a least maximized

condition. If c1n is a least maximized condition, no in-

coming edges to v1s exist because v1s should be a starting

variable. In addition, no outgoing edges from vnd exist

when vnd is a terminating variable and every variable in
the variable path is distinct. Thus we are not able to find

adjacent nodes for the variable path to add in front of

v1s or behind vnd. On the other hand, when vnd is the

second occurrence of a variable, no other adjacent nodes

of vnd can be added to the variable path without vio-

lating the definition of a simple path. Note that no other

variables can be inserted in the middle of the variable

path, because the conditions follow one another in the

sequence. Therefore Case 2 indicates that c1n cannot be

a least maximized condition.

Consequently, the variable path is a simple path from

a starting variable.

To prove the converse, suppose the variable path is a
simple path from a starting variable, but the condition

c1n is not a least maximized condition. This means that

vnd is not a terminating variable and not the second

occurrence of a variable either. The two cases contra-

dicts that the variable path is a simple path from a

starting variable. Thus the condition c1n is a least max-

imized condition. �

The algorithm consists of two component algorithms,

and is given in Fig. 3. Algorithm Preprocess is the main

algorithm, and initiates DFS by calling Algorithm

Concatenate to get every simple path to some termi-

nating variable for each starting variable. The meaning

of each sub-routine should be clear by its name. In

particular, Appendð;; eÞ means appending a path ex-

pression e to the end of an empty path expression.
Annotateðp; dÞ creates a variable annotation d at the end

of the path expression p.
Algorithm Preprocess is sound and complete as stated

in Theorem 1.

Theorem 1. A condition set Cq is the least maximized
condition set for a given query Q iff Cq is the resulting
condition set produced by Algorithm Preprocess from the
query Q.

Proof. We first show that Algorithm Preprocess pro-

duces every simple path from each starting variable in

the interaction graph of Q. The algorithm starts with

finding a starting variable. Since every data is rooted, all

queries should access the root via a globally named

Fig. 3. The DFS-based preprocessing algorithm.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 225

variable. This guarantees that there is at least one

starting variable. Hence, every interaction graph con-

tains one or more starting variables. After finding a

starting variable, the algorithm initiates searching for

every simple path by invoking Algorithm Concatenate.
Algorithm Concatenate finds all possible simple paths
from the starting variable by recursion. If the recursion

terminates, we have a set of all simple paths that begin at

the starting variable. Algorithm Preprocess proceeds

with another starting variable. By Lemma 1, the re-

sulting condition set Cq is the least maximized condition

set for Q.

Conversely, if Cq is the least maximized condition set,

each condition in Cq is a least maximized condition. By
Lemma 1, the least maximized condition is a simple path

in the interaction graph of Q. Therefore each least

maximized condition in Cq must be generated by Algo-

rithm Preprocess, because the algorithm finds every

simple path from each starting variable in the interac-

tion graph. �

Finally, it is noticeable that our algorithm can treat
cyclic queries in the same way as linear queries, since it

concatenates ordinal conditions until it either visits a

terminating variable or revisits a variable already vis-

ited. The latter case corresponds to cyclic queries. In the

sequel, the pruning phase, to be discussed later in this

section, optimizes the resulting queries properly. We il-

lustrate this with the running example later on.

5.1.3. The time complexity

Given n conditions, we need to check the other n� 1

conditions for each condition in order to build the in-

teraction graph. Thus, the time complexity to build the
interaction graph and to store the additional informa-

tion is Oðn2Þ. In addition, in order to produce the least

maximized condition set, we traverse every directed edge

by DFS ðOðnÞÞ for each starting variable. Since the

number of distinct variables is proportional to n, the
time complexity to produce the least maximized condi-

tion set is Oðn2Þ as well. Consequently, the total time

complexity is Oðn2Þ.

5.1.4. The example

The interaction graph for the example query is given

in Fig. 4. The preprocessing phase seeks every least

maximized condition in the graph, and produces four

least maximized conditions as follows:

(1) *.Professor.Project :ASupported_by :B

Research._.Project.A in Research_orga-

nizations

(2) *.Professor.Project :A

Supported_by :BName.C in Research_orga-

nizations

(3) _ :BResearch._.Project :ASupported_by.B in

Research_organizations

(4) _ :BName.C in Research_organizations

5.2. Pruning phase

The pruning phase is an extended version of the

previous query pruning. Since the core mechanism is not

modified, we present the extensions to process the

variable annotation only.

5.2.1. The extensions in constructing product automata

A dot in a condition corresponds to a state in the

nondeterministic automaton for the condition. Thus, if
a dot accompanies a variable annotation, the corre-

sponding state is annotated with the variable. The

variable annotation of a state is preserved in the product

automaton. Formally, if the state a in the automaton A

is annotated with the variable v, the corresponding

states ðs; aÞ in the product automaton S�A are anno-

tated with v as well. We use a superscript to denote the

annotated variable v as in av and ðs; avÞ.

5.2.2. The extensions in constructing the AND/OR graph

Considering all states ðsi; avjÞ annotated with the

common variable v, v may be bound to some node in

extðsiÞ iff it can be bound to each of these states. This

AND condition is processed using the AND node ðsi; vÞ
in the AND/OR graph. In addition, consider each state

ðsi; avjÞ in a certain product automaton S�Al. All paths
from ðsi; avjÞ can continue in S�Al only when ðsi; vÞ is
accessible in the AND/OR graph. To process the AND

condition and the continuance condition, the pruning

phase creates an AND node ðsi; aj; vÞ for each ðsi; avjÞ,
and connects them as follows: (1) all transitions of

ðsi; avjÞ are transferred to ðsi; aj; vÞ; (2) add an edge

ðsi; avjÞ ! ðsi; aj; vÞ; (3) add an edge pair ðsi; aj; vÞ !
ðsi; vÞ and ðsi; vÞ ! ðsi; aj; vÞ for ðsi; aj; vÞ and the AND
node ðsi; vÞ. This edge pair can be connected directly

since ðsi; avjÞ is unique within S�Al for si in S and avj in
Al, and so is ðsi; aj; vÞ.

Fig. 4. The interaction graph for the example query.

226 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

The pruning phase computes the maximal accessi-

bility property as before, and produces pruned product

automata. When ðsi; aj; vÞ is not on a path from the

accessible initial state to some accessible terminal state

in S�Al ðsi; aj; vÞ becomes inaccessible in S uAl. When

ðsi; aj; vÞ is inaccessible, ðsi; vÞ is also inaccessible, and
vice versa. In contrast, the previous query pruning ig-

nores both the AND condition and the continuance

condition for the states ðsi; avjÞ. Instead, it uses a certain

individual product automaton S�Ak for some original

condition, whose destination variable is v, of the given

query and the OR node ðsi; v;AkÞ for v and S�Ak.

5.2.3. The extensions in composing the resulting optimized

query

For every pruned product automaton S uAl, convert

each path from the accessible initial state to an acces-

sible terminal state into a set of conditions each of which

is equivalent to a sub-path delimited by accessible AND

nodes ðs; a; vÞ on the path. After that, eliminate all du-

plicate conditions, and combine all conditions from a
common source variable to a common destination

variable using the set of labels delimited by ‘‘j’’.

5.2.4. The time complexity

The variable annotations are used for a limited

number of states in all the product automata of the

AND/OR graph. Thus, considering additional AND

nodes ðs; a; vÞ introduced by the variable annotations,

the time complexity of the previous query pruning is not
compromised by the extensions. Consequently, the

pruning step runs in polynomial time with respect to

the number of states in the regular path expressions and

the number of schema nodes in the schema.

5.2.5. The example

Recall the four least maximized conditions for the

example query at the end of the previous subsection. We
depict the pruned product automata of Condition (3)

and Condition (4) with some related portions of the

AND/OR graph in Fig. 5. All nodes of dotted lines are

inaccessible, whereas the others are accessible. Unlike

the AND/OR graph in Fig. 2(c), since ðs3; a2;BÞ and

ðs14; a5;AÞ of Condition (3) are inaccessible, so are

ðs3;BÞ and ðs14;AÞ. In addition, ðs8;CÞ is inaccessible

because ðs3;BÞ and hence ðs3; a2;BÞ of Condition (4) are
inaccessible. Thus, the resulting optimized query is as

follows:

Fig. 5. A part of the resulting AND/OR graph for the example query.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 227

Note that this query is fully optimized. If the edges

labeled as Institute or Laboratory are encoun-

tered during evaluation, their sub-graphs are never tra-

versed. In addition, Industrial_research_areas

edge denoting the research areas only for Institute

or Laboratory does not appear in Condition (4).

5.2.6. Correctness and effectiveness

Let hðvÞ be a data node that substitutes for the

variable v in the substitution h. The pruning phase

discovers which AND nodes ðsi; vÞ are accessible in the

AND/OR graph G for any query Q, giving us which

data nodes 2 extðsiÞ possibly substitute for v. Thus, the
correctness of the pruning phase can be stated as fol-

lows. For any data D conforming to the schema S and

any variable v in Q, the AND node ðsi; vÞ in G is ac-
cessible if there exists a substitution h of Q�s variables

such that hðvÞ 2 extðsiÞ for some schema node si in S.

On the other hand, the converse means the effectiveness

that the pruning phase discovers valid substitutions

only.

Theorem 2. For any query Q and schema S, let QS be the
optimized query produced by the two-phase query pruning
with respect to S. QS is equivalent to Q over S, and con-
tains no schema-level excessive paths.

Proof. We show that, for any data D conforming to S

and any variable v in Q, the AND node ðsi; vÞ in the

AND/OR graph G for Q is accessible iff there exists a

substitution h of Q�s variables such that hðvÞ 2 extðsiÞ
for some schema node si in S.

Firstly, we prove the if part by constructing an ac-

cessibility property A, a set of accessible nodes, of G

based on h. A consists of (1) all AND nodes (si; v) for
which hðvÞ 2 extðsiÞ, (2) all OR nodes ðsi; v;AlÞ for

which hðvÞ 2 extðsiÞ, (3) all states ðsi; aÞ, and AND nodes

(si; a; v) if v is annotated at ðsi; aÞ, in the pruned product

automaton S uAl of the condition Rl.vl2 in vl1 , for

which there exists the path accepted by Al from hðvllÞ to
hðvl2Þ in D such that an intermediate data node

x 2 extðsiÞ on the path corresponds to the state a of Al.

Since h is a substitution which satisfies all conditions in

Q, A is indeed an accessibility property. Thus, if

hðvÞ 2 extðsiÞ, then ðsi; vÞ is accessible.
Secondly, we prove the only if part by contradiction.

Assume hðvÞ 6¼ extðsiÞ for any h. Consider the original

condition Rl.v in vs of Q and the automaton Al for the

condition. Because of the assumption, Al does not ac-

cept any path from hðvsÞ to some data node x 2 extðsiÞ.
After preprocessing, the condition is incorporated into
at least a least maximized condition. Hence some part of

the automaton AL for the least maximized condition

corresponds to Al. We denote the part as AL : Al, and

denote its terminal state as al. Consider the product

automaton S�AL. If the terminal state of the AL is that

of AL : Al, the OR node (si; v;AL) and the AND node

ðsi; vÞ are inaccessible since AL : Al does not accept any

path to (si; al). Otherwise, all paths that pass through
ðsi; alÞ become inaccessible by AL : Al. If v is annotated

at al of AL : Al, the AND node ðsi; al; vÞ and ðsi; vÞ are
inaccessible since AL : Al does not accept any path to

ðsi; avlÞ. These contradict the sufficient condition that

ðsi; vÞ is accessible. Thus, if ðsi; vÞ is accessible,

hðvÞ 2 extðsiÞ. �

6. Experiments

We have implemented, in Java, a prototype system

capable of performing both the previous query pruning

and the two-phase query pruning. Using the prototype,

we have conducted several meaningful experiments. For

the experiments, we have used three kinds of typical

schemas, which are linear schemas, branching schemas,
and cyclic/joining schemas. All the experiments are

performed on a Pentium III PC (700 MHz) with 192 MB

of memory.

6.1. Schemas and queries

The shape of the linear schemas is depicted in

Fig. 6(a). Experiments are conducted with various val-
ues for n and b. The parameters, n and b, mean the

schema depth and the number of outgoing branches for

the node s[0] (i.e., the root pointed to by the globally

select C

where ðAcademic institute j UniversityÞ:Department:Faculty:Professor:Project:A
in Research organizations; ð1Þ
ðAcademic institute j UniversityÞ:B in Research organizations; ð2Þ
Name:C in B; ð3Þ
Research:Academic research areas:Project:A in B; ð4Þ
Supported by:B in A ð5Þ

228 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

named variable DB), respectively. The schema depth is

the number of levels in the schema counted from the

root whose depth is 0. The bigger the values for b and n

are, the bigger the size of a linear schema is. In the ex-

periments, we have used values 5, 10, and 15 for b. For

n, we have used values 2, 3, 4, and 5. The path expres-

sions of queries used in the experiments are listed in

Table 2, and the number of path expressions of linear
queries are identical to the schema depth. These exper-

iments will show the effect of both the number of path

expressions and the size of schema.

The branching schema in the shape depicted in Fig.

6(b) has fixed values 15 and 3 for b and n, respectively.

In this schema, b means the number of outgoing bran-

ches for each node. Therefore, it has many more nodes
than the linear schema with the same values for b and n

has. We experiments with various branching queries of

different branching depths to show the effect of the dif-

ferent branching depths. As listed in Table 2, differen-

tiating the branching depth naturally results in different

numbers of path expressions. The numbers of path ex-

pressions in the queries are 6, 5, and 4, for each

branching depth of 0, 1, and 2, respectively.
Fig. 6(c) shows the shape of the cyclic/joining sche-

mas. The schemas have different joining depths with

fixed values 15 for b and 5 for n. In Fig. 6(c), we depict

the different joining depths using four alternative edges

pointing to different nodes according to each joining

depths in lieu of single deepest edges for the nodes at

depth 4. Furthermore, we number the four alternative

edges with their respective joining depths for the edge
e[4][1]. We experiment with various cyclic/joining

queries (listed in Table 2) on the schemas to show the

effect of the various joining depths. These experiments

will show the effect of both cyclic join and its joining

depth.

Finally, we conduct an experiment on the running

example as well.

6.2. Experimental results

The experimental results on linear schemas and que-

ries are summarized in Fig. 7. Fig. 7(a) shows that total

execution time for the previous query pruning (denoted

by org) grows exponentially with respect to the number

of path expressions. In contrast, total execution time for

the two-phase query pruning (denoted by 2P) does not
exceed 100 ms for all cases. This tendency is not changed

by various b values, but becomes conspicuous by bigger

values.

Fig. 7(b) shows the total number of node accesses

during computing maximal accessibility property. This

indicates that the total number of node accesses grows

according to the growth of both number of path ex-

pressions and schema size, but never grows exponen-
tially. Furthermore, it is noticeable that the pruning

phase of the two-phase query pruning (denoted by 2P)

runs more efficiently than the previous one. The reason

is that the two-phase query pruning computes maximal

accessibility property earlier. Maximal accessibility

property is computed by finding new inaccessible nodes

from accessible nodes iteratively until no more change.

Initially, all nodes in the AND/OR graph are accessible.
In the computation, the two-phase query pruning re-

quires fewer iterations than the previous query pruning.

Fig. 6. Three kinds of typical schemas: (a) shape of the linear schemas,

(b) shape of the branching schema, (c) shape of the cyclic/joining

schemas.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 229

According to our experimental results, while the previ-

ous query pruning requires six iterations, the two-phase

query pruning requires only two iterations when n value

is 5, regardless of b values.
Consequently, the origin of the exponential growth is

the exponential combinations of sub-results. The previ-

ous query pruning has to check all the combinations

using product automata through the post-processing,

resulting in exponential growth as depicted in Fig. 7(c).

In contrast, according to the experiments, the prepro-

cessing phase accesses each path expression twice. That

is, if n is 4, only eight accesses are needed to compute the
least maximized condition set. This tendency is not

changed even if we apply the linear queries to other

schemas such as branching schemas and cyclic/joining

schemas.

Table 2

The queries used in the experiments

Type Name Schema depth Path expressions

Linear Ql2 2 _.X1 in DB, e[1][1].X2 in X1

Ql3 3 _.X1 in DB, _.X2 in X1, e[2][1].X3 in X2

Ql4 4 _.X1 in DB, _.X2 in X1, _.X3 in X2, e[3][1].X4 in X3

Ql5 5 _.X1 in DB, _.X2 in X1, _.X3 in X2, _.X4 in X3, e[4][1].X5 in X4

Branching depth

Branching Qb0 0 _.X1 in DB, _.X12 in X1, e[1][1][1].X13 in X12

_.X2 in DB, _.X22 in X2, e[15][15][15].X23 in X22

Qb1 1 _.X1 in DB, _.X12 in X1, e[1][1][1].X13 in X12

_.X22 in X1, e[1][15][15].X23 in X22

Qb2 2 _.X1 in DB, _.X12 in X1, e[1][1][1].X13 in X12

e[1][1][15].X23 in X12

Joining depth

Cyclic/joining Qj1 1 _.X1 in DB, _.X2 in X1, _.X3 in X2, _.X4 in X3,e[4][1].X1 in X4

Qj2 2 _.X1 in DB, _.X2 in X1, _.X3 in X2, _.X4 in X3, e[4][1].X2 in X4

Qj3 3 _.X1 in DB, _.X2 in X1, _.X3 in X2, _.X4 in X3, e[4][1].X3 in X4

Qj4 4 _.X1 in DB, _.X2 in X1, _.X3 in X2, _.X4 in X3, e[4][1].X4 in X4

Fig. 7. The experimental results on linear schemas and queries: (a) total execution time, (b) total number of node accesses during pruning, (c) total

number of binding checks during the post-processing.

230 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

The experimental results on the effect of different

branching depths are given in Fig. 8(a). As we have al-

ready mentioned, deeper branching depths can be ex-

pressed with fewer path expressions. Thus, the total

execution time of the previous query pruning grows
exponentially as branching depth approaches to depth 0.

This is also due to the exponential combinations of sub-

results. In contrast, the total execution time of the two-

phase query pruning is less than 2854 ms for all

branching depths.

In the case of cyclic/joining queries, the total execu-

tion time of the previous query pruning approaches to

that of the two-phase query pruning as the joining depth
goes up to depth 1. This is due to the cyclic join. For

instance, in the case of query Qj1, the number of sub-

results (accessible AND nodes in the AND/OR graph)

for the join variable X1 decreases from 15 to 1 since only

the single AND node (s[1], X1) remains accessible

after pruning the last path expression (e[4][1].X1 in

X4). In addition, this also reduces the number of sub-

results further during the next iteration. According to
the experimental results, the previous query pruning

completes its execution within 71 ms when joining depth

is less than 2. This result is better than that of the two-

phase query pruning (within 90 ms). However, if the

joining depth goes deep exceeding depth 3, the effect of

cyclic join diminishes rapidly. Hence, total execution

time of the previous query pruning grows exponentially.

Again, the origin of the exponential growth is the ex-
ponential combinations of sub-results as well.

The experimental result on the running example also

illustrates the effect of cyclic join. The total execution

time of the previous query pruning is 40 ms, and that of

the two-phase query pruning is 70 ms. It is the combined

effect of the small schema size (14 nodes) and the shal-

low cyclic join (depth 1) by the join variable B that

renders the previous query pruning efficient. The reason
why the two-phase query pruning runs a little longer is

that its AND/OR graph contains more nodes, whereas

number of iterations is 3 for the two techniques. The

experimental results are given in Table 3. Notice that the

post-processing time (10 ms) is greater than the pre-

processing time (0 ms).

Finally, Table 4 presents the resulting queries of both

the previous query pruning without the post-processing

and the two-phase query pruning when b value is 15.

This shows the effectiveness of the two-phase query

pruning. We exclude the similar resulting queries for the
other values of b to avoid meaningless repetition. In

addition, we exclude the resulting query for the running

example since we have presented it already in the pre-

vious sections. We are able to have equivalent queries to

those of the two-phase query pruning if we post-process

the resulting queries of the previous query pruning.

However, the two-phase query pruning may produce

fewer path expressions since it may omit useless inter-
mediate variables from the given queries during pre-

processing.

Table 3

The experimental result on the running example

The two-phase query pruning

Total number of expression accesses 13

Preprocessing time (ms) 0

Number of nodes in the AND/OR graph 588

Number of iterations 3

Total number of node accesses 1764

Pruning time (ms) 70

Total execution time (ms) 70

The query pruning with the post-processing

Number of nodes in the AND/OR graph 350

Number of iterations 3

Total number of node accesses 1050

Pruning time (ms) 30

Total number of binding checks 40

Post-processing time (ms) 10

Total execution time (ms) 40

Number of path expressions ¼ 5.

Fig. 8. The experimental results on branching depths and joining depths: (a) total execution time for branching queries, (b) total execution time for

cyclic/joining queries.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 231

7. Concluding remarks

We have presented an effective and scalable two-

phase query pruning for multiple regular path expres-
sions, which eliminates schema-level excessive paths

without compromising the time complexity. On the basis

of the new concepts to cope with the ineffectiveness of

the previous query pruning, the preprocessing phase

finds every least maximized condition from an input

query in polynomial time with respect to the number of

regular path expressions. The pruning phase, which is an
extended version of the previous query pruning, pro-

duces fully optimized path expressions in polynomial

time with respect to the number of states in the regular

Table 4

The resulting queries from the experiments

Type Name The query pruning without the post-processing The two-phase query pruning

Linear Ql2 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].X2 in DB

e[1][1].X2 in X1

Ql3 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].e[2][1].X3 in DB

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1,

e[2][1].X3 in X2

Ql4 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].e[2][1].e[3][1].X4 in DB

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1,

(e[2][1]|e[2][2]|� � �|e[2][15]).X3 in X2,

e[3][1].X4 in X3

Ql5 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].e[2][1].e[3][1].-

e[4][1].X5 in DB

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1,

(e[2][1]|e[2][2]|� � �|e[2][15]).X3 in X2,

(e[3][1]|e[3][2]|� � �|e[3][15]).X4 in X3,

e[4][1].X5 in X4

Branching Qb0 (e[1]|e[2]|� � �|e[15]).X1 in DB, e[1].e[1][1].e[1][1][1].X13 in DB,

(e[1][1]|e[1][2]|� � �|e[15][15]).X12 in X1, e[15].e[15][15].e[15][15][15].X23 in DB

e[1][1][1].X13 in X12,

(e[1]|e[2]|� � �|e[15]).X2 in DB,

(e[1][1]|e[1][2]|� � �|e[15][15]).X22 in X2,

e[15][15][15].X23 in X22

Qb1 (e[1]|e[2]|� � �|e[15]).X1 in DB, e[1].X1 in DB,

(e[1][1]|e[1][2]|� � �|e[15][15]).X12 in X1, e[1][1].e[1][1][1].X13 in X1,

e[1][1][1].X13 in X12, e[1][15].e[1][15][15].X23 in X1

(e[1][1]|e[1][2]|� � �|e[15][15]).X22 in X1,

e[1][15][15].X23 in X22

Qb2 (e[1]|e[2]|� � �|e[15]).X1 in DB, e[1].e[1][1].X12 in DB,

(e[1][1]|e[1][2]|� � �|e[15][15]).X12 in X1, e[1][1][1].X13 in X12,

e[1][1][1].X13 in X12, e[1][1][15].X23 in X12 e[1][1][15].X23 in X12

Cyclic/joining Qj1 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].X1 in DB,

e[1][1].X2 in X1, e[2][1].X3 in X2, e[1][1].e[2][1].e[3][1].e[4][1].X1 in X1

e[3][1].X4 in X3, e[4][1].X1 in X4

Qj2 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].X2 in DB,

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1, e[2][1].e[3][1].e[4][1].X2 in X2

e[2][1].X3 in X2, e[3][1].X4 in X3,

e[4][1].X2 in X4

Qj3 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].e[2][1].X3 in DB,

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1, e[3][1].e[4][1].X3 in X3

(e[2][1]|e[2][2]|� � �|e[2][15]).X3 in X2,

e[3][1].X4 in X3, e[4][1].X3 in X4

Qj4 (e[0][1]|e[0][2]|� � �|e[0][15]).X1 in DB, e[0][1].e[1][1].e[2][1].e[3][1].X4 in DB,

(e[1][1]|e[1][2]|� � �|e[1][15]).X2 in X1, e[4][1].X4 in X4

(e[2][1]|e[2][2]|� � �|e[2][15]).X3 in X2,

(e[3][1]|e[3][2]|� � �|e[3][15]).X4 in X3,

e[4][1].X4 in X4

232 C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233

path expressions and the number of schema nodes in the

semistructured schema.

In addition, we have proved that the preprocessing

phase is sound and complete, and the two-phase query

pruning is correct and effective. Finally, we have con-

ducted several experiments, and the experimental results
show that our two-phase query pruning is both effective

and scalable unlike the previous approach.

Acknowledgements

This research was supported by the Brain Korea
program of the Ministry of Education & Human

Resources Development.

References

Abiteboul, S., 1997. Querying semi-structured data. In: Proceedings of

the Sixth International Conference on Database Theory, pp. 1–18.

Abiteboul, S., Quass, D., McHugh, J., Widom, J., Wiener, J.L., 1997.

The Lorel query language for semistructured data. International

Journal on Digital Libraries 1 (1), 68–88.

Abiteboul, S., Buneman, P., Suciu, D., 2000. Data on the Web: From

Relations to Semistructured Data and XML. Morgan Kaufmann

Publishers, San Francisco, CA, USA.

Buneman, P., 1997. Semistructured data. In: Proceedings of the

Sixteenth ACM SIGACT-SIGMOD-SIGART Symposium on

Principles of Database Systems, pp. 51–61.

Buneman, P., Davidson, S.B., Fernandez, M.F., Suciu, D., 1997.

Adding structure to unstructured data. In: Proceedings of the Sixth

International Conference on Database Theory, pp. 336–350.

Calvanese, D., De Giacomo, G., Lenzerini, M., Vardi, M.Y., 1999.

Rewriting of regular expressions and regular path queries. In:

Proceedings of the 18th ACM SIGACT-SIGMOD-SIGART

Symposium on Principles of Database Systems, pp. 194–204.

Christophides, V., Abiteboul, S., Cluet, S., Scholl, M., 1994. From

structured documents to novel query facilities. In: Proceedings of

the ACM SIGMOD International Conference on Management of

Data, pp. 313–324.

Christophides, V., Cluet, S., Moerkotte, G., 1996. Evaluating queries

with generalized path expressions. In: Proceedings of the ACM

SIGMOD International Conference on Management of Data, pp.

413–422.

Fernandez, M.F., Suciu, D., 1998. Optimizing regular path expressions

using graph schemas. Proceedings of the 14th International

Conference on Data Engineering, pp. 14–23 (The full version

is available at http://www.cs.washington.edu/homes/suciu/files/

paper-techrep.ps).

Goldman, R., Widom, J., 1997. DataGuides: enabling query formu-

lation and optimization in semistructured databases. In: Proceed-

ings of the 23rd International Conference on Very Large Data

Bases, pp. 436–445.

Halevy, A.Y., 2000. Theory of answering queries using views.

SIGMOD Record 29 (4), 40–47.

Kifer, M., Kim, W., Sagiv, Y., 1992. Querying object-oriented

databases. In: Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 393–402.

McHugh, J., Widom, J., 1999a. Compile-time path expansion in lore.

Proceedings of the Workshop on Query Processing for Semistruc-

tured Data and Non-Standard Data Formats.

McHugh, J., Widom, J., 1999b. Optimizing branching path expres-

sions. Technical Report, Stanford University.

McHugh, J., Widom, J., 1999c. Query optimization for XML. In:

Proceedings of the 25th International Conference on Very Large

Data Bases, pp. 315–326.

Nestorov, S., Ullman, J.D., Wiener, J.L., Chawathe, S.S., 1997.

Representative objects: concise representations of semistructured,

hierarchical data. In: Proceedings of the 13th International

Conference on Data Engineering, pp. 79–90.

Quass, D., Rajaraman, A., Sagiv, Y., Ullman, J.D., Widom, J., 1995.

Querying semistructured heterogeneous information. In: Proceed-

ings of the Fourth International Conference on Deductive and

Object-Oriented Databases, pp. 319–344.

Chang-Won Park is a Ph.D. candidate of the Division of Computer
Science at Korea Advanced Institute of Science and Technology. His
current research interests include XML and semistructured databases,
query processing for XML and Semistructured data.

Chin-Wan Chung is professor and chair of the Division of Computer
Science at the Korea Advanced Institute of Science and Technology
(KAIST). From 1983 to 1993, he was a senior research scientist and a
staff research scientist in the Computer Science Department at the
General Motors Research Laboratories (GMR). He received a Ph.D.
from the University of Michigan in 1983. While at GMR, he developed
DATAPLEX, a heterogeneous distributed database management sys-
tem integrating relational databases and hierarchical databases. At
KAIST, he developed a full scale object-oriented spatial database
management system called OMEGA, which supports ODMG stan-
dards. His current research interests include multimedia databases,
XML, OLAP and spatio-temporal databases.

C.-W. Park, C.-W. Chung / The Journal of Systems and Software 64 (2002) 219–233 233

http://www.cs.washington.edu/homes/suciu/files/paper-techrep.ps

	An effective query pruning technique for multiple regular path expressions
	Introduction
	Related work
	Motivation and our approach
	The organization of the paper

	Preliminaries and running example
	Query pruning
	Least maximized condition set
	Two-phase query pruning
	preprocessing phase
	Constructing the interaction graph
	The DFS-based preprocessing algorithm
	The time complexity
	The example

	Pruning phase
	The extensions in constructing product automata
	The extensions in constructing the AND/OR graph
	The extensions in composing the resulting optimized query
	The time complexity
	The example
	Correctness and effectiveness

	Experiments
	Schemas and queries
	Experimental results

	Concluding remarks
	Acknowledgements
	References

